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Abstract

The Hough Transform (HT) is an effective and popular technique for detecting image features such as lines and
curves. From its standard form, numerous variants have emerged with the objective, in many cases, of extending the
kind of image features that could be detected. Particularly, corner and line segment detection using HT has been
separately addressed by several approaches. To deal with the combined detection of both image features (corners
and segments), this paper presents a new variant of the Hough Transform. The proposed method provides an
accurate detection of segment endpoints, even if they do not correspond to intersection points between line
segments. Segments are detected from their endpoints, producing not only a set of isolated segments but also a
collection of polylines. This provides a direct representation of the polygonal contours of the image despite
imperfections in the input data such as missing or noisy feature points. It is also shown how this proposal can be
extended to detect predefined polygonal shapes. The paper describes in detail every stage of the proposed method
and includes experimental results obtained from real images showing the benefits of the proposal in comparison with
other approaches.
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1 Introduction
Corner and line segment detection is essential for many
computer vision applications. Corner detection is used in
a wide variety of applications such as camera calibration
[1], target tracking [2], image stitching [3], and 3D model-
ing [4]. The detection of line segments can also be helpful
in several problems including robot navigation [5], stereo
analysis [6], and image compression [7]. Going a step fur-
ther, the combined detection of both image features may
result in the identification of polygonal structures, which
plays an important role in many applications such as aerial
imagery analysis [8, 9] and cryo-electron microscopy [10].
The Hough Transform (HT) [11] is one of the most

popular and widely used techniques for detecting image
features such as lines, circles, and ellipses [12]. Its effec-
tiveness emerges from its tolerance to gaps in feature
boundaries and its robustness against image noise. These

*Correspondence: pilarb@unex.es
Department of Computer and Communication Technology, University of
Extremadura, Avda. de la Universidad s.n., 10003 Caceres, Spain

properties make HT a powerful tool for detecting image
features in real images. To exploit its benefits, we propose
a new variant of the HT, called HT3D, for the combined
detection of corners and line segments.
The basic form of the Hough Transform, also known

as the Standard Hough Transform (SHT) [13], has been
established as the main technique for straight line detec-
tion [14–16]. The line detection problem is transformed
by the SHT into a peak detection problem. Each feature
point, obtained from a previous pre-processing stage such
as edge detection, is mapped to a sine curve following
the expression d = x cos(θ) + y sin(θ). The parameter
space defined by (θ , d) is discretized into finite intervals,
called accumulator cells or bins, giving rise to the Hough
space (also referred to as the accumulator array). Using
this discrete version of the parameter space, each feature
point votes for the lines passing through it by increment-
ing the accumulator cells that lie along the corresponding
curve. After this voting process, lines are located at those
positions forming local maxima in the Hough space.
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The SHT for straight line detection does not provide a
direct representation of line segments, since feature points
are mapped to infinite lines in the parameter space. To
deal with segment representation, we propose a 3DHough
space that, unlike SHT, uses several bins to represent each
line. This 3D Hough space not only provides a segment
representation but also encloses canonical configurations
of two kinds of distinctive points: corners and non-
intersection endpoints. Corners are points at which two
line segments meet at a particular angle. Non-intersection
endpoints are extreme points of line segments that do not
intersect any other segment. Both types of points iden-
tify line segment boundaries, but corners can additionally
be considered connection points among segments. This
makes it possible to extend line segment detection to
the identification of chains of segments. Thus, the pro-
posed parameter space constitutes a suitable structure
for detecting three kinds of image features: corners, line
segments, and polylines.
The use of HT for individual detection of corners

and line segments has been explored from different
approaches over the last few decades.
For segment detection, two main approaches have been

proposed. The first group of methods is based on image
space verification from the information of the HT peaks.
Song and Lyu [17] propose an HT-based segment detec-
tion method which utilizes both the parameter space and
the image space. Using a boundary recorder for each
parameter cell, the authors develop an image-based line
verification algorithm. The boundary recorder of each cell
includes the upper and lower boundaries which enclose
all feature points contributing to that cell. Gerig [18] sug-
gests a backmapping which links the image space and
the parameter space. After the accumulation phase, the
transform is used a second time to compute the loca-
tion of the cell most likely to be related to each image
point. This backmapping process provides a connection
between edge points and Hough cells in the detection of
line segments.Matas et al. [19] present PPHT (Progressive
Probabilistic Hough Transform), a Monte Carlo variant
of the Hough Transform. PPHT obtains line segments by
looking along a corridor in the image specified by the peak
in the accumulator modified during pixel voting. Nguyen
et al. [20] propose a similar strategy, but in this approach,
the method is based on SHT with some extensions.
The other group of methods for segment detection

detects properties of segments by analyzing the data in
the parameter space. Cha et al. [21] propose an extended
Hough Transform, where the Hough space is formed by
2D planes that collect the evidence of the line segment
that passes through a specific column of the input image.
Using this scheme, a feature extraction method is pro-
posed for detecting the length of a line segment. In the
study by Du et al. [22], the authors propose a segment

detection method based on the definition and analysis of
the neighborhoods of straight line segments in the param-
eter space. In another study [23], the parameters of a line
segment are obtained by analyzing the distinct distribu-
tion around a peak in the accumulator array. This distri-
bution is called butterfly distribution due to its particular
appearance. Xu and Shin [24] propose an improvement of
the peak detection by considering voting values as prob-
abilistic distributions and using entropies to estimate the
peak parameters. Endpoint coordinates of a line segment
are then computed by fitting a sine curve around the peak.
In relation to corner detection using HT, various meth-

ods can be found in the literature. Davies [25] uses the
Generalized Hough Transform [26] to transform each
edge pixel into a line segment. Corners are found at peaks
in the Hough space, where lines intersect. Barret and
Petersen [27] propose a method to identify line intersec-
tion points by finding collections of peaks in the Hough
space through which a given sinusoid passes. Shen and
Wang [28] present a corner identification method based
on the detection of straight lines passing through the ori-
gin in a local coordinate system. For detecting such lines,
the authors propose a 1D Hough Transform.
Unlike other methods, our proposal provides an inte-

grated detection of corners and line segments, which has
important benefits in terms of accuracy and applicability
of the results. Thus, segments are detected from pre-
viously extracted endpoints, which guarantees a better
correspondence between detected and actual segments
than other approaches. Corners are detected by search-
ing for points intersecting two line segments at a given
range of angles. This makes it possible to detect features
that other methods miss, such as obtuse-angle corners.
Besides corners, our technique detects the location of any
segment endpoint with high accuracy, even if such an end-
point does not belong to any other segment. In addition,
the proposed method produces chains of segments as a
result of segment detection, providing a complete repre-
sentation of the polygonal contours of the image despite
imperfections in the input data such as missing or noisy
feature points.
The rest of the paper is organized as follows. Section 2

details the proposal. Specifically, the proposed 3D
Hough space and the voting process are described in
Subsection 2.1. Subsection 2.2 presents the corner and
endpoint detection method. In Subsection 2.3, the algo-
rithm for segment detection and polygonal approximation
is detailed. All these subsections show how to keep the
computational complexity under certain limits. In addi-
tion, an analysis of the computational cost of each phase of
the proposed method is included in Subsection 2.4. Sub-
section 2.5 describes how our proposal can be extended
to detect not only arbitrary polygonal shapes but also
predefined ones. Section 3 presents experimental results
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with real images, comparing the methods proposed in this
paper with other approaches. Finally, Section 4 summa-
rizes the main conclusions of this paper.

2 The proposedmethod
2.1 The 3D Hough space
To deal with the detection of line segments using HT, a
parametrization of the geometric model of this kind of
image features must be established. Thus, assume that
two points ei = (xi, yi) and ej = (xj, yj) define an image
segment of the line l(d, θ) ≡ d = x cos(θ) + y sin(θ).
Let pi and pj be the positions of ei and ej relative to the
line l(d, θ). To compute these relative positions, consider
a coordinate system local to the line where the vertical
axis coincides with the line and the horizontal one passes
through the image origin (see Fig. 1). Using this local sys-
tem, the relative position (p) of a point e = (x, y) of the line
l(d, θ) can be computed by determining the y-coordinate
of the point as follows:

p = −x sin(θ) + y cos(θ) (1)

According to this and taking pi < pj, a point e = (x, y)
belongs to the segment eiej if it fulfills the following two
expressions:

d = x cos(θ) + y sin(θ) (2)
pj > = −x sin(θ) + y cos(θ) >= pi (3)

Equation 2 determines whether the point e belongs to
the line l(d, θ). The additional condition expressed by
Eq. 3 forces the point e to be situated between ei and ej.
Considering the conditions imposed by these two

expressions, a line segment can be described by four
parameters: d, θ , pi , and pj. It is assumed that the origin of
the image coordinate system is located at its center. Thus,

Fig. 1 Relative position p of an image point e to the line l(d, θ). The
relative position p is computed by determining the y-coordinate of
the point e in a coordinate system local to the line l (dotted red lines). It
is considered that the image reference system (dotted blue lines) is
situated at the image center (O)

θ ∈ [0,π), and d, pi, pj ∈ [−R,+R], with R being the half of
the length of the image diagonal. This leads to a 4D param-
eter space, where each feature point (x, y) in the image
contributes to those points (θ , d, pi, pj) of the parameter
space that verify Eqs. 2 and 3.
This parameter space provides a complete representa-

tion of image line segments. Nevertheless, in practice, the
use of a 4D structure could make the detection method
excessively demanding in terms of memory and time. To
tackle this problem, a 3D parameter space representing
a subset of line segments is proposed (Fig. 2). This seg-
ment subset is defined by the point pairs e0 − ej, with e0
being a fixed endpoint situated at the smallest line posi-
tion (p0 = −R) and ej a variable endpoint situated at any
position p within a line. Thus, the proposed Hough space
is parametrized by (θ , d, p), with θ and d being the param-
eters of the line representation (l(d, θ) ≡ d = x cos(θ) +
y sin(θ)) as in the standard HT. The additional parame-
ter p defines the relative position of ej for a given segment
e0ej of the line l(d, θ). Using this representation, any point
(x, y) contributes to those points (θ , d, p) in the Hough
space verifying Eq. 2 and the expression of Eq. 3, taking
pi as −R and pj as p. Since the parameter p ranges from
−R to R, the last inequation of expression 3 is always true.
Thus, such an expression can be rewritten as follows:

p >= −x sin(θ) + y cos(θ) (4)

Although this 3D Hough space does not directly rep-
resent every possible segment of the image, it allows
computing the total number of points included in any
given segment (see Fig. 2). For instance, take a segment of
a given line l(dl, θl) defined by the endpoints ei = (xi, yi)
and ej = (xj, yj). Assuming that, for the line l, pi is lower
than pj, it can be stated that segment e0ei is included in
e0ej. Thus, the number of points belonging to eiej, which
is denoted by Hi↔j, can be computed as:

Hi↔j = |H(θl, dl, pi) − H(θl, dl, pj)| (5)

with H being the proposed 3D Hough space.
This last equation leads into the quantification of the

segment strength, which for two points ei and ej can be
expressed as:

ss(ei, ej) = Hi↔j/
√

(xi − xj)2 + (yi − yj)2 (6)

The values of ss(ei, ej) range from 0 to 1. The higher the
value, the higher the likelihood of the existence of a line
segment between ei and ej.

2.1.1 The voting process
In order to form the discrete 3D Hough space H, the
parameters θ , d, and p are discretized assuming resolu-
tions of �θ for θ ,�d for d, and �p for p. To carry out
the voting process, for every orientation plane (H(θ)),
each point must vote for those cells that verify Eqs. 2
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Fig. 2 3D Hough space and line segment representation. Points of a line l(dl , θl) contribute to a subset of cells situated at dl in the Hough plane
H(θl). Specifically, a point ei situated at a position pi relative to the line l(dl , θl) contributes to the subset of cells for which p >= pi . As a conse-
quence, the bin H(θl , dl , pi) contains the total number of feature points of the segment e0ei . Likewise, the bin H(θl , dl , pj) contains the number of
feature points of e0ej . Thus, the difference between the contents of both bins provides the total number of feature points of the segment eiej

and 4. This process is computationally expensive, since it
entails running two nested loops for every feature point.
However, this complexity can be reduced by dividing the
voting process into two stages: (a) points only vote for
the first segment they could belong to in every orienta-
tion plane, i.e., p is computed using only the equality of
expression 4; (b) starting from the second discrete value
of p (pd = pmin + 1), each cell in H(θd, dd , pd) accu-
mulates with H(θd, dd, pd − 1) for θd ∈ [θmin, θmax] and
dd ∈ [dmin, dmax]. Algorithms 1 and 2 describe these two
stages. As it can be observed, in the second stage, each cell
in H is saturated to �p before accumulation takes place.
Cell saturation means that every cell crossed by a segment
must contain a minimum contribution for it to be con-
sidered an actual segment. This reduces false positives in
the detection of segments caused by the contribution of
different line points to common bins.
To improve the efficiency of this voting scheme, addi-

tional optimizations can be introduced. Thus, as sug-
gested in some approaches, the local orientation of the
edges can be used to limit the range of angles over which
a point should vote [26]. This reduces the computational
cost of Algorithm 1. In relation to Algorithm 2, a possible
optimization consists of storing, for every line, the mini-
mum value of pd for which points have voted and using
this value to start each accumulation loop. This means
that if a line of the Hough space has no points, it will not
be taken into account at the accumulation stage, and so
the time needed to execute that stage is reduced.

Algorithm 1 First stage of the voting process
1: for each edge point (x, y) do
2: for θd = θmin . . . θmax do
3: Compute the real value θ associated to θd
4: Compute d = x cos(θ) + y sin(θ)

5: Compute the discrete value dd associated to d
6: Compute p = −x sin(θ) + y cos(θ)

7: Compute the discrete value pd associated to p
8: Increment H(θd, dd, pd) by 1
9: end for

10: end for

Algorithm 2 Second stage of the voting process
1: for θd = θmin . . . θmax do
2: for dd = dmin . . . dmax do
3: if H(θd , dd , pmin) > �p then
4: H(θd , dd , pmin) ← �p
5: end if
6: for pd = pmin + 1 . . . pmax do
7: if H(θd , dd , pd) > �p then
8: H(θd , dd , pd) ← �p
9: end if

10: H(θd , dd , pd) ← H(θd , dd , pd) + H(θd , dd , pd − 1)
11: end for
12: end for
13: end for
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Fig. 3 Representation of two segments of a line l(dl , θl) in the 3D Hough space

2.1.2 Interpreting the 3DHough space
Using the proposed parameter space, segment detection
cannot be treated as a traditional peak detection prob-
lem, since each cell only contains information about one of
the two endpoints of a given segment. Complete segment
parametrization is held in pairs of cells with common
values of θ and d. Thus, segment detection is accom-
plished by searching for pairs of cells belonging to the
same line that exhibit a ratio of close to 1 between the
difference of content (number of points included between
segment endpoints) and the difference of position (seg-
ment length). To avoid detecting segment parts as inde-
pendent segments, it is required that a line segment may
not belong to a longest segment. Figure 3 shows this idea.
This figure graphically depicts the content of the cells
associated with a given line l(dl, θl) using a continuous
function in parameter space for simplification. The evolu-
tion of cell contents shows the existence of two (ideal) line
segments: the first one situated between line positions pi
and pj and the other one between pk and pl.
This strategy for segment detection presents two main

drawbacks. Firstly, the computational cost of checking
the segment feature for every pair of cells of each line is
excessive. In addition, in the discrete parameter space, the
accuracy of segment representation could not be enough
to obtain useful results. To solve both problems, we pro-
pose detecting segment endpoints instead of complete
segments and using the resulting positions to confirm
the existence of line segments. The benefit of applying
this process is twofold: in the first place, segment end-
points can be detected from local cell patterns, reduc-
ing considerably the cost of feature detection; secondly,
starting from the initial positions of points detected in
the parameter space, segment endpoints can be accu-
rately located in the image space computing the pixel

locations that maximize an endpoint measure in a local
environment.
The following subsections describe this approach to fea-

ture detection. Starting from segment endpoints detection
(Subsection 2.2), it is detailed how to extract line seg-
ments from the 3D Hough space with good precision
(Subsection 2.3) as well as more complex image features
(Subsection 2.5).

2.2 Detection of segment endpoints
In our proposal, segment endpoints are classified into two
types of distinctive points: corners and non-intersection
endpoints. A corner point is a point that belongs to at least
two segments. A non-intersection endpoint is an extreme
point of a segment which does not belong to any other
segment. Figure 4 shows some representative examples of
both kinds of points.
The detection process of corners and non-intersection

endpoints can be visualized by focusing on the accumu-
lator subset corresponding to the particular orientation
associated to an image line segment. Assuming that in
the resulting 2D array the parameter d corresponds to the
horizontal dimension and p to the vertical one, an image
line segment only contributes to a vertical segment of
cells in the corresponding orientation plane of the Hough
space, since the value of the parameter d remains constant
for all the points on the line. This phenomenon produces
the canonical configuration of cells in Figs. 5b and 6b for
pieces of image segments containing a non-intersection
endpoint (Fig. 5a) or a corner (Fig. 6a). In these config-
urations, black cells represent cells whose values differ
from the ones above them, white cells are cells in the
opposite situation and gray cells correspond to cells
whose content is not significant for corner or endpoint
detection. As it can be observed, except the one associated
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Fig. 4 Examples of the different kinds of line segment endpoints considered in the proposed detection method. a Original gray image. b Line
segments obtained by an edge detection process. In this second image, corners are marked with green squares and non-intersection endpoints with
red circles. Corners correspond to the crossing points of two line segments at a certain range of angles. Non-intersection endpoints appear in the
intersections of line segments with the image boundaries as well as in the start and end points of the open polylines resulting from image areas
with progressive gray-level variations

with a corner, black cells must be situated beside white
cells to reduce the number of false corners and endpoints
caused by nearby image segments. In addition, since the
proposed parameter space only covers the orientation
range [0,π), it is also considered a flipped version of each
Hough segment representation.
According to the correspondence between a line seg-

ment in the image and Hough spaces, the detection of
corners and non-intersection endpoints can be solved
by searching for the aforementioned configurations of
segments in the 3D Hough space. To check these config-
urations, cells are grouped into vertical full (black cells)
or empty (white cells) segments. A vertical full segment
verifies that the difference between its last and first cell
is greater than a threshold τF . On the other hand, this

Fig. 5 Relation between a non-intersection segment endpoint in the
image space and its representation in the 3D Hough space. a
Non-intersection segment endpoint in the image space (endpoint
position is represented by a green circle). b Representation of an
image endpoint in the 3D Hough space. Cells associated with the
endpoint are marked with a green “x”

difference must be lower than a near to zero threshold (τE)
in an empty segment. Thus, given a certain position in
the Hough space (θd, dd , pd) and taking η as the number
of cells of a full piece of segment in the Hough represen-
tation, to verify if that position contains, for instance, a
corner, the following must be fulfilled:

H(θd, dd, pd + η − 1) − H(θd, dd, pd − 1) > τF (7)

and

H(θd, dd + 1, pd + η − 1) −H(θd, dd + 1, pd) < τE (8)

or

H(θd, dd − 1, pd + η − 1) −H(θd, dd − 1, pd) < τE (9)

for the plane H(θd) and the same expressions for the cor-
responding position of the plane H((θ + ϕ)d), given a
certain range of ϕ and assuming θ < π and (θ + ϕ) < π .
The value of η should be chosen according to the need

for detecting approximations of line segment endpoints
in curvilinear shapes. Small values of η provide additional
feature points that are the result of changes of curva-
ture on curvilinear boundaries. Nevertheless, these points
are less stable than rectilinear corners and segment end-
points. Thus, if the stability of detected features along
image sequences is essential, greater values of η must be
chosen.

2.2.1 Reducing the computational complexity
The verification of the segment configurations of corners
and endpoints over the whole 3D Hough space entails
many computations due to its size. Nevertheless, there are
two issues that should be taken into account in the imple-
mentation of this detection process. The first one is that if
a line has few points, it is not necessary to search for cor-
ners and endpoints over its cells, since it will contain no
segment. This situation can be verified checking the cell
H(θd, dd , pmax) for any θd and dd defining a line, since such
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Fig. 6 Relation between an image corner and its representation in the 3D Hough space. a Image corner (corner position is represented by a green
circle). b Representation of an image corner in the 3D Hough space. Cells associated with the corner are marked with a green “x”

a cell contains the total number of points belonging to that
line. Another important question that should be consid-
ered is that, in the discrete parameter space, the relative
positions of the cells crossed by a piece of image seg-
ment remain the same in several consecutive orientation

planes. Thus, it is not necessary to run the detection pro-
cess for every orientation plane, but only for those planes
representing a certain increase in angle (φ).
To compute φ, consider the positions (d1, p1) and

(d2, p2) (Eqs. 1 and 2) in a given orientation plane H(θ) of

Fig. 7 Result of segment endpoint detection. a Original image. b Canny image. c Initial image positions of detected segment endpoints obtained
from their positions in the 3D Hough space. d Final segment endpoint positions in the image space
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Fig. 8 Results of segment detection of the image in Fig. 7a. a Detected segments without considering segment endpoints of neighboring lines. b
Detected segments without non-maximum suppression. cDetected segments using endpoints of neighboring lines and non-maximum suppression

any two image points (x1, y1) and (x2, y2). Assuming that
d′
1 and d′

2 are the positions in d of these two points for an
angle θ + φ, the differences in d of (x1, y1) and (x2, y2) for
the two angles are related as follows:

(d′
1 − d′

2) = (d1 − d2)cos(φ) + (p1 − p2)sin(φ) (10)

Given d′
1 − d′

2 ≥ 0 and 0 < φ < π/2, Eq. 10 can be
rewritten as:

(d′
1 − d′

2) ≤ (d1 − d2) + (p1 − p2)tan(φ) (11)

Assuming (d′
1 − d′

2) − (d1 − d2) ≥ 0 1, the last equation
provides an expression of the maximum change of posi-
tion in d of the segment defined by (x1, y1) and (x2, y2)
for an increase in angle φ (a similar expression can be
obtained for changes in p):

(d′
1 − d′

2) − (d1 − d2) ≤ (p1 − p2)tan(φ) (12)

In order to make this maximum change (Cd) only
dependent on φ, the maximum possible value of (p1 − p2)

is considered. This value, for pieces of segment formed by
η cells in the Hough representation of corners and end-
points, can be set to η�p. Thus, Eq. 12 can be rewritten as
follows:

Cd = (η�p)tan(φ) (13)

Taking into account the rounding and aliasing effects of
the coordinate transformation between image and param-
eter spaces, a constant value of 1 pixel forCd is considered,
which leads to the following final expression for φ:

φ = arctan
1

η�p
(14)

This reduces the number of orientation planes that must
be checked for corners and endpoints detection. In addi-
tion, since φ and �p are inversely related, the increase
of computations in each orientation plane caused by a
decrease of�p is compensated by a reduction of the num-

Fig. 9 Rectangle representation in the 3D Hough space
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ber of planes where the search must be done. Another
important result of this definition for φ is that its value
does not change with �θ . Thus, reducing the angular res-
olution does not increase the computational time of the
detection process.

2.2.2 Locating corners and endpoints in the image
Once Hough cells containing corners and endpoints are
detected, the next step is to compute their positions in the
image. The set of image points belonging to a Hough cell
(H(θd, dd, pd)) can be approximated using an image win-
dow of size w × w, with w the maximum between �d and
�p, centered on (xc, yc):

xc = d cos(θ) − p sin(θ) (15)
yc = d sin(θ) + p cos(θ) (16)

with θ , d, and p being the real values associated with
θd , dd, and pd. Thus, given a Hough cell (H(θd, dd, pd))
containing a corner or endpoint, locating its image posi-
tion can be solved by searching for the pixel within the
corresponding image window that maximizes some cor-
ner/endpoint criterion. For this purpose, the minimum
eigenvalue of the covariance matrix of gradients over the
pixel neighborhood is used [29] 2. Such a function pro-
vides maximum values at corners and endpoints in the
point neighborhood.
Figure 7 shows the result of applying this process to

a real image. Firstly, using the edge image of Fig. 7b,

Fig. 10 Results of rectangle detection of the image in Fig. 7a

the initial positions of corners/endpoints are obtained by
detecting corner/endpoint patterns in the Hough space
(Fig. 7c). Then, these positions are adjusted looking for
the maximum of the minimum eigenvalue function in the
pixel neighborhood (Fig. 7d).

2.3 Detection of segments and polylines
Once corners and endpoints have been extracted, image
segments can be detected by checking the strength of any
segment formed by a pair of points (Eq. 6). In order to
avoid testing segments for every pair of points, detected
segment endpoints are placed on the Hough space apply-
ing the corresponding transformation for every orienta-
tion value. This provides, for each line representation, a
list of points with which segment validation should be
done. Assuming that points on that list are ordered by the
value of the parameter p, segment detection can be easily
solved using Algorithm 3.

Algorithm 3 Segment detection
1: for θd = θmin . . . θmax do
2: for dd = dmin . . . dmax do
3: if pointList(θd, dd).size() > 1 then
4: ei ← pointList(θd, dd)[0]
5: j ← 1
6: insertSegment ← false
7: maxSS ← 0
8: while j < pointList(θd, dd).size() do
9: ej ← pointList(θd, dd)[j]

10: newSS ← ss(ei, ej)
11: if newSS > μs and newSS >= maxSS then
12: ef ← ej
13: insertSegment ← true
14: maxSS ← newSS
15: j ← j + 1
16: else
17: if insertSegment then
18: segmentList.add(ei, ef )
19: ei ← ef
20: insertSegment ← false
21: maxSS ← 0
22: else
23: ei ← ej
24: j ← j + 1
25: end if
26: end if
27: end while
28: if insertSegment then
29: segmentList.add(ei, ef )
30: end if
31: end if
32: end for
33: end for
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In this algorithm, pointList(θd, dd) represents the afore-
mentioned list of detected segment endpoints of the line
defined by θd and dd. If this list contains at least two
points, a segment validation process begins. Given an ini-
tial segment endpoint (starting from the first element of
the list), this process involves searching for the final end-
point of a common line segment (among the subsequent
elements of the list) that produces the highest segment
strength above a threshold μs. This search stops if the
current final endpoint provides a lower strength than the
previous one. In such a case, the previous validated seg-
ment is stored and the process is restarted taking the
last valid final endpoint as the initial endpoint of a new
segment.
The rounding step of the coordinate transformation

between image and Hough spaces could make an almost
vertical segment divide into two pieces. To deal with this
problem, if an image corner or endpoint falls near a cell

of the neighboring line, it is included in the list of points
of that line. This mostly solves the segment breakdown
problem, although it may increase the number of false
positives. Nevertheless, they can be discarded applying a
subsequent non-maximum suppression step to the seg-
ments with a common endpoint. Thus, taking the angle
defined by two segments with a common endpoint as a
proximity measure, if two segments are considered near
enough, the one with the smallest strength is removed
from the set of detected segments.
Figure 8 shows the result of detecting the segments of

image in Fig. 7a using the corners and endpoints of Fig. 7d.
Figure 8a shows the result of segment detection with-
out considering segment endpoints of neighboring lines.
Figure 8b shows the result of using endpoints close to each
line without applying the non-maximum suppression pro-
cess. Finally, Fig. 8c depicts detected segments using extra
endpoints with non-maximum suppression.

Fig. 11 First set of images used for the detection of endpoints, corners, and line segments
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Since segments are confirmed from their endpoints,
they are implicitly interconnected forming polylines.
These polylines can be extracted from the graph repre-
sentation that is obtained taking endpoints as vertices
and segments as edges connecting vertices. Thus, each
disconnected subgraph resulting from this representation
corresponds to a polyline in the image. In the ideal case,
when each node has one or two edges, this is the only
valid interpretation of the graphs. However, if there exist
vertices with more than two connections, each polyline
can be decomposed into simple pieces. In such cases, a
graph partitioning technique [30] can be applied in order
to obtain a more realistic polyline representation.

2.4 Computational complexity of the corner and segment
detection method

The analysis of the computational complexity of the pro-
posed corner and segment detection method can be

studied by considering its five different phases: (a) first
stage of the voting process (line voting); (b) second stage
of the voting process (accumulation); (c) corner/endpoint
detection; (d) corner/endpoint mapping between image
and Hough spaces; and (e) segment detection. Assuming
the Hough space is formed by l orientation planes of size
m×m and taking n as the number of edge points, the two
stages of the voting process can be performed with com-
putational costs O(mn) and O(lm2), respectively. Using a
single voting process would entail a computational cost
of O(lmn) instead. It must be noted that generally n is
much bigger than m, so in practice, the two-stage voting
scheme is much less time-consuming. Corner detection
is solved with a computational cost of O(lrm2), with lr
being the number of orientation planes using φ (Eq. 14)
as angle resolution. lr is significantly smaller than any
of the dimensions of the Hough space, so this computa-
tional cost can be considered sub-cubic. Taking p as the

Fig. 12 Second set of images used for the detection of endpoints, corners, and line segments
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number of detected corners/endpoints, the mapping of
these points from the image space to the Hough space,
as a previous step to segment detection, is achieved with
cost O(lp). This is also the computational cost of seg-
ment detection, since each plane will contain p points and
each point can at most confirm two segments in the same
orientation plane.
Despite all the included optimizations, the proposed

method presents a clearly higher computational cost than
many existing approaches for independent detection of
corners and line segments. Nevertheless, all its phases
iteratively carry out the same processing over indepen-
dent elements of both image and Hough spaces, which
makes them inherently parallelizable. Taking advantage of
this, we have developed a parallel implementation of the
proposed corner and segment detector on a GPU. This
implementation attempts to approximate the computa-
tional cost of each phase to linear time in relation to the

image size. Regarding the sequential version, speedups
above 400× in some of the phases and about 35× in the
whole method, including data exchanges between CPU
and GPU, have been obtained3. Although this implemen-
tation significantly outperforms its sequential counter-
part, we are working on new optimizations to improve the
speedup dealing with GPU programming issues such as
coalesce memory accesses and optimal occupancy.

2.5 Detection of other image features
As explained above, the segment detection process pro-
vides not only a set of segments but also a set of polygo-
nal chains. These polygonal chains have arbitrary shapes
since they are the result of the implicit connection of
the detected segments. Nevertheless, the proposedHough
space can also be used for the detection of predefined
polygonal shapes. One of the simplest cases is the detec-
tion of rectangles [31, 32].

Fig. 13 Detected corners and endpoints for the first set of images
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Since a rectangle is composed of four segments, the
3D Hough space makes it possible to compute the total
number of points included in the contour of the rectan-
gle. Thus, considering a rectangle expressed by its four
vertices V1 = (x1, y1),V2 = (x2, y2),V3 = (x3, y3), and
V4 = (x4, y4) (see Fig. 9), the number of points of its
contour, denoted as Hr , can be computed as:

Hr = H1↔2 + H2↔3 + H3↔4 + H4↔1 (17)

where each Hi↔j denotes the number of points of the
segment defined by Vi and Vj (Eq. 5).
Figure 9 shows an example of rectangle representation

in the discrete parameter space. Each pair of parallel seg-
ments of the rectangle is represented in the corresponding
orientation plane of the Hough space: H(αd) for one pair
of segments and H((α + π/2)d) for the other one, with
αd and (α + π/2)d being the discrete values associated
to α (rectangle orientation) and (α + π/2), respectively.

For each orientation plane, there is a representation of
how many points contribute to each cell (dd, pd), i.e.,
how many points belong to every segment of the corre-
sponding orientation. A high histogram contribution is
represented in the figure with a dark gray level, while a
low contribution is depicted with an almost white color.
As it can be observed, the highest contributions are found
in parallel segments with displacements of wd and hd,
which are the discrete values associated to the rectangle
dimensions.
Taking this rectangle representation into account and

considering continuous values of each parameter for sim-
plification, each Hi↔j of expression 17 can be rewritten as
follows:

H1↔2 = |H(α, d1↔2, d4↔1) − H(α, d1↔2, d2↔3)| (18)
H2↔3 = |H(α + π/2, d2↔3,−d1↔2)

− H(α + π/2, d2↔3,−d3↔4)| (19)

Fig. 14 Detected corners and endpoints for the second set of images
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H3↔4 = |H(α, d3↔4, d2↔3) − H(α, d3↔4, d4↔1)| (20)
H4↔1 = |H(α + π/2, d4↔1,−d3↔4)

− H(α + π/2, d4↔1,−d1↔2)| (21)

with di↔j being the parameter d of the straight line
defined by the points Vi and Vj, which are related with the
rectangle dimensions as follows

w = d3↔4 − d1↔2 (22)

h = d2↔3 − d4↔1 (23)

According to these expressions, rectangle detection
can be solved by searching for those combinations of
(α, d1↔2, d2↔3, d3↔4, d4↔1) for whichHr/(2∗w+2∗h) >

τr , given a certain value of τr near to 1. To improve the
efficiency of this process, instead of checking each combi-
nation of these parameters, previously detected segment
endpoints can be used to preselect an initial subset of

Fig. 15 Zoomed representative regions of the images in Figs. 13 and 14. In this figure, the differences in the detection results of corners and
segment endpoints provided by the three methods can be clearly appreciated
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Table 1 Number of detected corners/endpoints (NEpd) for the
ten test images

NEpd

FAST Harris HT3D

1 273 330 375

2 318 401 477

3 1084 1165 1369

4 1306 1315 1753

5 833 910 1336

6 1400 1662 1984

7 1139 1264 1341

8 1395 1561 1866

9 799 846 1108

10 1615 1714 1950

combinations. Thus, a similar procedure to the one shown
in Algorithm 3 can be applied for θ < π/2 to find the first
segment of a potential rectangle, which provides values for
α, d1↔2, d2↔3 and d4↔1. Then, using the list of points of
the Hough line corresponding to l(d2↔3,α + π/2), possi-
ble values for d3↔4 are obtained, completing the quintuple
defining a rectangle.
Figure 10 shows the result of applying the above pro-

cess to the image in Fig. 7a. During the detection process,
the segment endpoints of Fig. 7d are used for restrict-
ing the parameters of potential rectangles as previously
described.

3 Results and discussion
To evaluate the performance of the proposed detec-
tion methods, they have been applied to a set of real
images with ground truth. This section shows the results,

comparing them with the ones obtained using other
approaches.
A critical point when using an HT-based approach is

to decide the resolutions of the parameter space. Finer
quantizations do not always provide better results. Indeed,
noise sensitivity grows for higher precision with regard
to d [33]. Zhang [34] proposes determining �d by con-
sidering the digitization of the spatial domain and then
computes �θ using the following relation:

nd = l�θ

2�d
(24)

with nd within the interval [0.5, 2] and l the length of the
longest line segment.
Fixing a value for �d (and also for �p) depends not

only on the need for a detailed result but mainly on the
nature of the image. Thus, for a noisy image, the detection
method will perform better using a value of �d that is
not too small. In addition, if the image complexity is not
too high, understanding complexity in terms of the num-
ber and distribution of edge point chains, a low value of
�d will provide a similar result to a higher one. For the
test images used to evaluate our proposal, a value of 2
for �d and �p has been chosen. However, it must be
pointed out that, for some of them, higher resolutions pro-
duce a comparable detection rate.�θ has been fixed using
expression 24 with nd = 1 and l = 400.
Results for corner and segment detection have been

obtained using the YorkUrbanDB dataset [35]. This
dataset contains 102 marked images of urban environ-
ments. Each image is labeled to identify the subset of
line segments that satisfy theManhattan assumption [36].
Both quantitative and qualitative evaluations have been
carried out for the whole set of images, comparing our
corner and segment detector (HT3D) with two corner

Table 2 Comparison of detected corners/endpoints with the ground truth for the ten test images

NEpc

FAST Harris HT3D

dEp 4 3 2 4 3 2 4 3 2
NEPg

1 78 35 33 25 45 40 32 53 47 33

2 222 118 96 70 127 115 93 143 128 99

3 170 81 71 59 93 90 73 125 120 94

4 1104 551 471 359 552 497 406 710 631 508

5 538 230 197 133 238 208 160 347 284 213

6 790 408 364 281 452 410 359 524 488 406

7 644 265 227 171 293 262 234 352 323 271

8 577 336 289 201 369 333 234 394 354 297

9 248 106 94 67 112 103 90 146 137 117

10 346 190 170 138 215 197 175 246 220 189

The number of correct matchings of each method (NEpc) is shown considering different values of the distance between ground truth and detected points (dEp). The total
number of ground truth points (NEPg) is shown in the first column
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Fig. 16 Ratio between NEpc (number of correct matchings between ground truth and detected points) and NEpd (total number of detected points)
for the whole dataset considering dEp = 3 (distance between ground truth and detected points). A low value of this ratio for one detector in
relation to other methods is indicative of a high number of false alarms. As it can be observed in this figure, the ratio remains almost constant in the
three methods for most of the test images, which denotes similar rates of false alarms in the three detectors

detectors and two segment detectors. A quantitative com-
parison of the different approaches using the 102 images
composing the dataset is shown here. Complete results for
a subset of ten images are also included. This subset corre-
sponds to the ten scenes of Figs. 11 and 12. For each scene,
these figures show the original image, the Canny image,
used as input in our approach, and the ground truth. Every
image has been smoothed using a 5 × 5 Gaussian filter
with a standard deviation of 1 before being applied to each
method, except for one of the segment detectors (LSD),
since it includes its own smoothing step.
For corner and endpoint detection, our method

has been compared with Harris [37] and FAST [38].

Parameters of these methods have been experimentally
chosen trying to favor the detection results as much as
possible according to the relation between true and false
corners. Specifically, for the Harris method, a neighbor-
hood size of 5 pixels and a sensitivity factor of 0.04 have
been used. Likewise, the intensity comparison threshold
of FAST has been set to 15. In the proposed method, a
length of 4 cells has been taken for the pieces of seg-
ments defining corners and endpoints in the Hough space
(parameter η). Also, the angle range to confirm corners
has been set to [75◦, 105◦].
Figures 13 and 14 show the corner/endpoint detection

results for the two sets of images in Figs. 11 and 12

Fig. 17 Ratio between NEpc (number of correct matchings between ground truth and detected points) and NEpd (total number of detected points)
for the whole dataset considering dEp = 2 (distance between ground truth and detected points). No significant variations of this ratio can be
observed among the three methods when reducing dEp . This indicates a similar accuracy of the compared methods
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Fig. 18 Ratio between NEpc (number of correct matchings between ground truth and detected points) and NEpg (number of ground truth points)
for the whole dataset considering dEp = 3 (distance between ground truth and detected points). This ratio quantifies the hit rates of the three corner
detection methods. In general, clearly higher hit rates can be observed when using the proposed method in the large majority of the test images

using FAST, Harris, and the proposed method. Figure 15
shows some representative regions of these images where
the differences among the detection results of the com-
pared approaches can be clearly appreciated. As it can be
observed, the three methods perform well in the detec-
tion of corners resulting from the intersection of straight
perpendicular edges. However, in most cases, the pro-
posed method provides additional corner points. Some of
them correspond to corners with non-right angles, mainly
obtuse-angle corners, and to corners with low intensity

in one of its edges (see the first three rows of images in
Fig. 15). In addition, as it was expected, only our method
detects non-intersection segment endpoints (see the last
two rows of Fig. 15). They can be mostly found in the
intersections between image lines and image limits. All
these additional distinctive points are essential for line
segment detection.
In order to quantitatively evaluate the three methods,

each group of detected points has been compared with
the segment endpoints of the ground truth data. Three

Fig. 19 Ratio between NEpc (number of correct matchings between ground truth and detected points) and NEpg (number of ground truth points)
for the whole dataset considering dEp = 2 (distance between ground truth and detected points). The hit rates of the proposed method remain
higher than the hit rates of the other two methods when reducing dEp . No significant differences in the accuracy of the three methods can be
appreciated in comparison to greater values of dEp
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measures were considered in this comparison: number
of detected corners/endpoints (NEpd), number of points
of the ground truth data (NEpg), and number of cor-
rect matchings between ground truth and detected points
(NEpc). To compute NEpc, different values of the max-
imum euclidean distance (dEp) between detected and
ground truth points were considered. Tables 1 and 2
show the results obtained for the ten test images. Table 1
contains the total number of detected corners/endpoints
using each method. Table 2 shows the number of ground
truth points of each image and the number of correct
matchings of the different detectors taking values of 4,
3, and 2 for dEp. Results show greater values of NEpd in
HT3D than in FAST and Harris, although NEpc grows
linearly. This behavior can also be observed in the entire
dataset from the results depicted in Figs. 16 and 17. These
figures show the ratio between NEpc and NEpd for each
image of the dataset considering values for dEp of 3 and

2, respectively. Since the ground truth only includes a
subset of potential line segments, false alarm rates can-
not be directly measured. Nevertheless, the ratio between
the number of correct matchings and the total number of
detected features constitutes a false alarm indicator in the
comparison among different methods. Thus, if a method
presents a clearly low value of this ratio in relation to other
approaches, it can be stated that the number of false detec-
tions of that method is significantly higher. For the present
comparison among the corner/endpoint detectors, as it
can be seen in Figs. 16 and 17, the ratio remains almost
constant in the three methods for all the tests, which
denotes similar rates of false detections in all of them.
In relation to the hit rate of each approach, which has
beenmeasured as the ratio between the number of correct
matchings and the number of ground truth points, Figs. 18
and 19 show higher values for HT3D than for the other
two methods, regardless of the value of dEp. Thus, on the

Fig. 20 Detected segments for the first set of images
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basis of this ratio, HT3D performs better than FAST in
almost 100% of the images and better than Harris in about
95% of the tests. Since the difference among the hit rates
of the three detectors does not significantly vary when
reducing dEp, the accuracy provided by all the methods
can be considered comparable.
Regarding segment detection, our method has been

compared with two segment detectors: PPHT [19] (see
Section 1 for a brief description) and LSD [39], a non-
Hough-based line segment detector, which works without
parameter tuning. In PPHT, the parameter space has been
discretized using values of 1 and π/180 for distance and
angle resolutions. Also, a minimum number of line votes
of 20 and a value of 5 for the minimum segment length
and themaximum gap of points of the same line have been
used. In our method, segments have been detected con-
sidering a minimum segment strength of 0.8. Results of
both Hough-based methods have been obtained from the
same edge images.

The detected segments using the three methods for the
ten test images are displayed in Figs. 20 and 21. Some
zoomed representative regions of these images are shown
in Fig. 22. The three segment detectors have also been
quantitatively evaluated considering, firstly, the number
of detected segments (NSd) and the percentage of con-
nected segments (CS). In images of real environments,
segments do not usually appear as isolated entities, but
as part of more complex features that allow object con-
tours to be described. This is especially true in man-made
environments, where, for instance, windows, doors, and
walls are composed of sets of segments which are con-
nected forming polylines. In this regard, we believe that
the ability of a segment detector to obtain not individ-
ual segments but chains of segments makes the detec-
tion results more reliable. Table 3 shows a quantization
of the segment-connectivity ability of the three meth-
ods through the measurement CS. As it can be observed,
PPHT, with the chosen parametrization, does not provide

Fig. 21 Detected segments for the second set of images
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Fig. 22 Zoomed representative regions of the images in Figs. 20 and 21. In this figure, the differences in the line segment detection results of the
three methods can be clearly appreciated

any connections among detected segments for any of the
test images. Detected segments from LSD do present
some degree of connectivity, but the connectivity rate is
much lower than the one obtained by HT3D, which pro-
vides results in greater accordance with the kind of scenes
in the image set.
Results of the three segment detector have also been

compared with the ground truth data, using the Hausdorff
distance [40] to determine the correct matchings. Given

two segments si = (ei1, ei2) and sj = (ej1, ej2), the Haus-
dorff distance between si and sj, denoted as hd(si, sj), is
defined as follows:

hd(si, sj) =min(max(|ei1 − ej1|, |ei2 − ej2|),
max(|ei1 − ej2|, |ei2 − ej1|)) (25)

Thus, taking a ground truth segment and a detected
one, it is considered that there exists a correct matching
between them if the corresponding value of hd is not
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Table 3 Number of detected segments (NSd) and percentage of
connected segments (CS) for the ten test images

PPHT LSD HT3D

NSd CS(%) NSd CS(%) NSd CS(%)

1 352 0 329 21 263 67

2 434 0 515 13 335 74

3 1847 0 751 17 912 69

4 2376 0 1274 15 1213 77

5 1655 0 838 13 907 63

6 2768 0 1034 20 1321 62

7 1079 0 1058 14 924 76

8 2622 0 1112 14 1269 62

9 1295 0 839 15 738 71

10 2194 0 1301 28 1355 77

The percentage of connected segments is indicative of the ability of a segment
detector to provide chains of segments corresponding to the polygonal image
contours. According to this measure, the proposed method (HT3D) produces clearly
better results than the other two approaches

greater than a maximum distance dS. Using this crite-
rion, Table 4 shows the number of correctmatchings (NSc)
of the three methods from the total number of ground
truth segments (NSg) considering values of 4, 3, and 2 for
dS. From the results obtained, it can be seen that PPHT
detects a lower number of correct matchings than the
other two approaches, even though the total number of
detected segments is considerably greater in many cases.
LSD clearly improves on the results of PPHT, but the hit
rates are generally lower than those provided by HT3D.
The difference in performance between HT3D and the
other two segment detectors becomes more evident as

Table 4 Comparison of detected segments with the ground
truth for the ten test images

NSc

PPHT LSD HT3D

dS 4 3 2 4 3 2 4 3 2
NSg

1 42 5 4 3 18 12 4 24 21 9

2 120 21 17 11 64 47 17 75 61 45

3 111 23 13 5 59 43 19 59 47 32

4 628 92 56 20 272 174 61 291 236 124

5 306 58 34 17 120 65 23 124 82 37

6 434 57 34 12 174 112 32 194 158 89

7 373 54 27 9 154 101 46 155 121 73

8 350 70 44 13 159 105 42 155 113 61

9 139 14 11 5 45 30 18 60 50 29

10 209 70 54 36 136 112 45 159 145 92

The number of correct matchings of each method (NSc) is shown considering
different values of the distance between ground truth and detected segments (dS).
The total number of ground truth segments (NSg) is shown in the first column

dS decreases. This can be observed, not only in the ten
test images but also in the whole dataset, through the
results depicted in Figs. 23, 24, 25 and 26. These figures
show the ratiosNSc/NSd andNSc/NSg 4 for each image of
the dataset considering values of 3 and 2 for dS. Regard-
ing the ratio between the number of correct matchings
and the total number of detected segments (NSc/NSd),
HT3D gives much greater values than PPHT in almost
100% of the tests for the different values of dS. The main
reason is that PPHT detects a high rate of false posi-
tives, which considerably diminishes this ratio. They can
be reduced by increasing the minimum number of line
votes, but at the expense of proportionally reducing the
number of correct matchings. In HT3D, false positives
are avoided by requiring that Hough cells in contigu-
ous positions to the ones defining a segment do not also
define full segments on both sides. This solves to a great
extent the problem of detecting false segments, although
this means that parallel segments must be situated some
distance away from each other in order to be correctly
detected.
In relation to the comparison between HT3D and LSD,

although the differences are less notable than in the com-
parison with PPHT, better results are obtained in most
cases when using HT3D. Differences between the results
of both methods become more obvious for dS = 2. The
principal cause is that segments detected by LSD repeat-
edly break off before reaching their actual endpoints. In
addition, when segments are crossed by other segments,
they break into shorter segments, which affects not only
the number of correct segments but also the total number
of detected segments. Both problems also occur in PPHT
(see Fig. 22).
With respect to the ratio NSc/NSg (hit rate), the results

obtained lead to similar conclusions. Thus, the hit rate of
HT3D remains above the one provided by PPHT in the
large majority of tests. In addition, the hit rate of HT3D is
higher than the hit rate of LSD in 71% of the test images
with dS = 3 and above it in 87% taking dS = 2. The aver-
age difference between the hit rates of both methods is 3.5
and 6.5 percentage points, assuming, respectively, dS = 3
and dS = 2. This denotes greater accuracy of the proposed
segment detector compared to the other two approaches.
Our rectangle detection method has also been tested

using a set of aerial images [41]. Figures 27, 28 and 29
show some results. The method has been tested using a
value of 3 for �d and �p and the corresponding value
of �θ obtained by expression 24. The rectangle strength
threshold τr has been set to 0.75. For each image in
Fig. 27, the Hough space is formed using the correspond-
ing edge image in Fig. 28. Detected rectangles are depicted
in Fig. 29. As it can be observed, despite the complexity
of some edge images, the varied size of the constructions,
and an imperfect or incomplete border representation of
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Fig. 23 Ratio between NSc (number of detected segments matching the ground truth data) and NSd (total number of detected segments) for the
whole dataset considering dS = 3 (distance between ground truth and detected line segments). Higher values of this ratio can be observed in most
of the test images for the proposed method when comparing with the other two approaches. This indicates a better performance of HT3D in
relation to LSD and PPHT. In addition, the low values associated to PPHT are indicative of a high number of false detections

some structures, the proposed method correctly detects
most of the rectangular contours. There are some false
detections caused by two different factors. False positives
corresponding to small areas are due to the fact that these
kinds of regions are less affected by edge gaps than bigger
ones and so they should be confirmed with higher values
of τr . In this sense, instead of using a constant threshold,
a variable threshold obtained as a function of the region
size should be applied to improve the results. The other
group of false detections corresponds to areas close to
actual rectangular regions that share several corners with
them. For better performance, those rectangles sharing
more than one corner and presenting a similar orientation
must be separately analyzed to determine which of them

are finally considered. Both improvements, however, are
beyond the scope of this paper since they are specific to
rectangle detection.

4 Conclusions
This paper presents an extension of the Hough Transform,
called HT3D, for the combined detection of corners, seg-
ments, and polylines. This new variant of HT uses a 3D
parameter space that facilitates the detection of segments
instead of lines. It has been shown how this representa-
tion also encloses canonical configurations of corners and
non-intersection endpoints, making it a powerful tool, not
only for the detection of line segments but also for the
extraction of such kinds of points.

Fig. 24 Ratio between NSc (number of detected segments matching the ground truth data) and NSd (total number of detected segments) for the
whole dataset considering dS = 2 (distance between ground truth and detected line segments). The differences among the three methods when
reducing dS become more significant, showing the greater accuracy of HT3D compared with the other two methods
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Fig. 25 Ratio between NSc (number of detected segments matching the ground truth data) and NSg (total number of segments of the ground truth
data) for the whole dataset considering dS = 3 (distance between ground truth and detected line segments). This ratio measures the hit rates of the
three methods for every test image. In general, it is possible to observe a greater correspondence of the results provided by the proposed method
with the ground truth data

One of the main novelties of our proposal is that line
segments are not directly searched for in the image.
Instead, they are verified from their endpoints using a
segment measure obtained from the segment represen-
tation provided by the Hough space. This makes line
segment detection robust to line gaps, edge deviations,
and crossing lines. In addition, this segment detection
strategy improves the accuracy of the results in relation to
other approaches. Thus, methods based on the analysis of
edge or gradient information in the image space miss the

actual boundaries of line segments, since gradient at those
points presents a high uncertainty [28]. Instead of building
chains of aligned edge pixels, the presented approach con-
firms the existence of line segments between couples of
previously detected endpoints. Experiments have shown
how this inverse strategy provides more accurate results
than the segment generation approach. The main draw-
back of using a segment measure is that it could produce
high responses for non-real line segments in noisy or
complex images. False positives are mainly false segments

Fig. 26 Ratio between NSc (number of detected segments matching the ground truth data) and NSg (total number of segments of the ground truth
data) for the whole dataset considering dS = 2 (distance between ground truth and detected line segments). Differences in the hit rates between
the proposed method and the other two approaches for segment detection become more obvious when reducing dS . This denotes the greater
accuracy of the proposal in relation to the compared detection methods
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Fig. 27 Set of images used for testing the proposed rectangle detection method

crossing several real segments. Thus, false detections can
be controlled by requiring that the Hough cells situated
in contiguous positions to the pair of cells defining a line
segment do not produce high values for the segment mea-
sure. Depending on the resolution of theHough space, this
additional criterion might discard true positive detections
corresponding to close parallel line segments. Neverthe-
less, it significantly reduces the number of false positives,
producing reliable results.

Regarding corner detection, our proposal provides an
alternative to intensity-based detectors. These methods
present some limitations in the detection of corners of
obtuse angles, since in the local environment of those
points significant intensity changes are only perceived
in one direction [42]. In our approach, corners are con-
sidered as image points intersecting two line segments
at a given angle range. This corner definition is con-
sistent with certain cell patterns in the Hough space.

Fig. 28 Edge representation of the images in Fig. 27



Bachiller-Burgos et al. EURASIP Journal on Image and Video Processing  (2017) 2017:32 Page 25 of 26

Fig. 29 Detected rectangles in the Fig. 27 images

Thus, applying a pattern matching process, corners are
detected in the Hough space and then located in the image
space. If a corner is identified in the Hough space, it is
accepted as a valid detection and the intensity image is
only used to find the most likely pixel position associ-
ated to the corresponding corner position in the Hough
space. This coarse-to-fine method avoids applying any
threshold related to changes of intensity in the corner
local environment, which allows the identification of cor-
ner points that other methods miss. The same proposed
strategy for corner detection is also used for detecting
other kinds of distinctive points corresponding to seg-
ment endpoints that do not intersect other line segments.
This set of points, called non-intersection endpoints, is
key for obtaining reliable results in the detection of seg-
ments, since segment endpoints do not always correspond
to corners. The experimental evaluation presented in this
paper shows good detection rates of both types of points
when comparing with the ground truth. Thus, our pro-
posal matches up to 20% more ground truth points than
the compared methods.
Besides the accuracy benefits, the combined detection

of corners and line segments produces the direct identi-
fication of polygonal structures in the image, which has
additional applications.Moreover, we have shown how the
segment measure can be extended to detect predefined
polygonal shapes, which are important image features
in a variety of problems, such as those related to the
identification of man-made structures in aerial images.
The whole detection method entails five processing

stages on a 3D memory structure, so it presents a

higher computational complexity than methods devoted
to the detection of individual features. Nevertheless, all
the stages present a characteristic structure that makes
them inherently parallelizable. In this regard, some initial
results of a parallel implementation of the method have
been obtained, showing a significant time reduction. We
are working on this parallel implementation and devel-
oping new optimizations to reduce execution times even
further.

Endnotes
1Otherwise, the same reasoning can be done using the

expressions of d1 and d2 from (d′
1, p′

1) and (d′
2, p′

2) instead
of Eq. 10.

2 It must be noted that this function is only computed
for those pixels detected as potential corners/endpoints in
the Hough space and not for the whole image.

3These results have been obtained on images of size
640×480 with around 15% edge points using an Intel
i7 2.67 GHz processor for the sequential version and a
NVIDIA GTX 1060 GPU for the parallel implementation.

4 Both ratios remain moderate in all the methods for
two main reasons. The first one is that the ground truth
data only include the set of line segments that conform to
the 3D orthogonal frame of the environment. In addition,
some marked segments do not have enough intensity to
be detected as image edges or they even appear partially
occluded in the gray image.
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